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5. NEW CHARACTERS 

FROM OLD 
 

§5.1. Inducing from Quotient Groups 
 It is possible to construct characters of a group from 

those of subgroups or quotient groups. In this way we can 

proceed from smaller groups to larger ones. Let’s begin 

with quotient groups. 

 

Theorem 1:  Suppose H is a normal subgroup of G and 

:G→G/H maps g to gH. Suppose that 

:G/H → GL(n, F) 

is a representation of G/H. Then: 

(1) G = :G → GL(n, F) is a representation of G. 

(2) if  is irreducible, so is G. 

(3) if  is the corresponding character of G then 
        G =  is a character of G. 

(4) if  is irreducible then so is G. 

Proof: (1) The product of two homomorphisms is a 

homomorphism. 

(2), (3) and (4) are obvious. ☺ 
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Example 1: If G = S4 then H = {I, (12)(34), (13)(24), 

(14)(23)} is a normal 

subgroup of G, with G/H  

S3. The complex character 

table for S3 is: 

 

class 1 2 3 

size 1 3 2 

1 1 1 1 

2 1 −1 1 

3 2 0 −1 

 

where 1 = {I}, 2 = {(12), (13), (23)} and 

3 = {(123), (132)}. 

 Now S4 has 5 conjugacy classes, corresponding to 

the cycle structures I, (), (), (), ()(). Let 

the corresponding conjugacy classes be 1, 2, 3, 4, 

5. Each i consists of cosets whose representatives come 

from one or more j. The correspondences are as follows: 

1  1 + 5, 2  2 + 4, 3 3 

Hence we get 3 of the 5 irreducible characters of S4 by 

inducing each of the irreducible characters of G/H. 

class 1 2 3 4 5 
size 1 6 8 6 3 
G1 1 1 1 1 1 
G2 1 −1 1 −1 1 
G3 2 0 −1 0 2 
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§ 5.2. Character Tables of Direct Products 
Theorem 2: Suppose the conjugacy classes of H are 1, 

2, …, r with corresponding sizes a1, a2, …, ar and 

suppose the conjugacy classes of K are 1, 2, …, s 

with corresponding sizes b1, b2, …, bs. 

Suppose the character tables for H, K are  = (ij) and 

 = (ij) respectively. 

(1) The set of conjugacy classes of H  K is {i  j}. 

 

(2) The character table for H  K is the rs  rs tensor 

product (ij)  (ij). 

Proof: (1) This follows from the fact that if x, h  H and 

y, k  K then 

(x, y) −1(h, k)(x, y) = (x−1hx, y−1ky). 

 

(2) Let :H→Mm(F) and :K→ Mn(F) be irreducible 

representations for H, K over a field F. 

Then (12):H  K → Mmn(F), defined by: 

(12)(h, k) = (h)  (k), 

is a representation of H  K. 

 

Let (h) = tr[(h)] and (k) = tr[(k)], that is the value of 

the characters  and  on h, k respectively. 

 

The character of 12 is the trace of: 

(h)  (k) = tr[(h)].tr[(k)] = (h).(k). 

Let this character of H  K be denoted by . 
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 |  = 
1

|H|.|K|
 
hH,kK

  |(h)(k)|2. 

Here we don’t weight the terms by the sizes of the 

conjugacy classes since we are summing over the 

elements and not the classes. 

 

So  |  = 
1

|H|
 
hH

  |(h)|2.
1

|K|
  

kK

  |(k)|2. 

Since  and  are irreducible, both these sums are 1 and 

so  |  = 1. 

Hence  is an irreducible representation of H  K. 

 

Now there are r possibilities for  and s 

possibilities for , giving rs possible irreducible 

representations for H  K. This is how many conjugacy 

classes there are in H  K and hence the number of 

irreducible representations for H  K. 

 

But before we can say that we’ve found them all, we must 

check that they are distinct. 

 

Suppose that  and  are also irreducible representations 

and  is the representation of H  K where 

(h, k) = (h).(k). 

 

Then  |  = 
1

|H|.|K|
 
hH,kK

  (h)(k)
_______

 (h)(k)
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                    = 
1

|H|
 
hH,kK

  (h)
____

(k)

 
 .

1

|K|
 (h)
____

(k)

 
 . 

If either    or    this will be zero. Hence the rs 

irreducible representations that we obtain in this way will 

be mutually orthogonal, and hence distinct. 

 

It remains to obtain the characters of these 

representations. Let ij be the Cartesian product i  j. 

If we order the conjugacy classes of H  K as: 

11, 12, …, 1s, 21, 22, … 2s, r1, r2, …, rs 

the character table of H  K will be (ij)  (ij). ☺ 

 

Example 3: The character table for A4 is 

class I ()() () () 

size 1 3 4 4 

1 1 1 1 1 

2 1 1  2 

3 1 1 2  

4 3 −1 0 0 

order 1 2 3 3 

 

and for S3 it is 
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class I () () 

size 1 2 3 

1 1 1 1 

2 1 1 −1 

3 2 −1 0 

order 1 3 2 

 

Let mn denote the product of a cycle of length m by a 

cycle of length n. So 22 represents () and 3 represents 

(). 

 

The character table for A4  S3 is: 

class (I,I) (22,I) (3,I) (3,I) (I,3) (22,3) 

size 1 3 4 4 2 6 

1 1 1 1 1 1 1 

2 1 1  2 1 1 

3 1 1 2  1 1 

4 3 −1 0 0 3 −1 

5 1 1 1 1 1 1 

6 1 1  2 1 1 

7 1 1 2  1 1 

8 3 −1 0 0 3 −1 

9 2 2 2 2 −1 −1 

10 2 2 2 22 −1 −1 

11 2 2 22 2 −1 −1 

12 6 −2 0 0 −3 1 

order 1 2 3 3 3 6 
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class (3,3) (3,3) (I,2) (22,2) (3,2) (3,2) 

size 8 8 3 9 12 12 

1 1 1 1 1 1 1 

2  2 1 1  2 

3 2  1 1 2  

4 0 0 3 −1 0 0 

5 1 1 −1 −1 −1 −1 

6  2 −1 −1 − −2 

7 2  −1 −1 −2 − 

8 0 0 −3 1 0 0 

9 −1 −1 0 0 0 0 

10 − −2 0 0 0 0 

11 −2 − 0 0 0 0 

12 0 0 0 0 0 0 

order 3 3 2 2 6 6 

 

§5.3. Inducing from Subgroups 
 Inducing up from quotient is of no use if we want 

to find the character table of a simple group. But simple 

groups have plenty of subgroups, and it’s possible to 

induce up from them. The big difference between the 

subgroup and quotient group situation is that when we 

induce up from an irreducible character of a quotient we 

always get an irreducible character of the larger group. 

But when we induce up from a subgroup we rarely get an 

irreducible character. Extra work is needed to split it into 

irreducible characters. 
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 Suppose U, V are finite-dimensional vector spaces 

over a field F with bases 

{u1, u2, …, um} and {v1, v2, … , vn} 

respectively. 

 We denote the ordered pair (ui, vj) by ui  vj and 

define the tensor product U  V to be the space spanned 

by the ui  vj. The dimension of U  V is the product of 

the dimensions of U and V.  

 Let H  G and let Y = {y1, y2, … , yn} be a right 

transversal of H in G (a set of representatives, one from 

each right coset of H in G). If F is a field then FY is the 

subspace of FG spanned by the elements of Y. 

 

 Let U be a finite dimensional vector space with a 

basis {u1, u2, … , um}. Then FY  U will have: 

{yi  uj | i = 1, 2, … , n and j = 1, 2, … , m} 

as a basis. These yi  uj are simply ordered pairs, written 

a little differently to usual. 

 

 Let :H→AutF(U) be a representation of H on the 

vector space U. The elements of FY  U will be linear 

combinations of the yi  uj. 
 

We can define a linear transformation from FY  U to 

itself by defining its effect on each basis vector. 
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 For g  G define (yi  uj)(gG) = yk  uj(yigyk
−1)) 

where yig  Hyk. In other words yk is the representative 

of the coset that yig belongs to. 

 

Note that yigyk
−1  H so (yigyk

−1) is defined and 

uj(yigyk
−1)  U and so is a linear combination of the uj. 

 

Having defined gG on each basis vector of FY  U we 

can extend it to the whole space by linearity. If G is the 

representation of G induced from a subgroup H, the 

corresponding character is denoted by G. 

 

Example 2: Let G = D6 = A, B | A3 = B2 = 1, BA = A−1B 

and let H = {1, AB}. 

Since H is a cyclic group of order 2 we can define a 

representation of degree 2 by mapping AB to a 2  2 

matrix of order 2, with 1 mapping to the 2  2 identity 

matrix. 

Define (AB) = 






1  1

0 −1
 . Let U be the set of row vectors 

(x, y) over ℂ. 

Take the standard basis e1 = (1, 0), e2 = (0, 1). 

Then U = e1, e2. 

 

The right cosets of H in G are: 

{1, AB}, {A, B}, {A2, A2B}. 
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We can obtain a transversal by simply making a choice of 

representative from each right coset. Suppose we choose 

Y = {AB, B, A2}. 

 

We are going to induce  up to G and so we must define 

gG for each g  G. Let’s just do it for g = A. 

 

Now we take, as a basis for ℂY  U the 6 elements: 

AB  e1, AB  e2, B  e1, B  e2, A
2  e1, A

2  e2. 

 

Relative to this basis gG will be represented as a 6  6 

matrix. The i’th row will be the coefficients, relative to 

this basis of the image of the i’th basis vector under gG. 

Let’s just find the 3rd row. 

 

The third basis vector is B  e1, so we need to find the 

representative of the right coset in which Bg lies. 

 

Now we’re taking g = A, so: 

Bg = BA = A−1B = A2B  {A2, A2B}. 

We chose A2 as the representative of this coset. 

So BA  HA2 and so BA(A2)−1  H. 

In fact BA(A2)−1 = BA−1 = AB. 

Yes, indeed this does belong to H and (AB) = 






1  1

0 −1
 . 

 

Now e1(AB) = (1, 1) = e1 + e2. 

Hence (B  e1) = A2  (e1 + e2) 

                          = A2  e1 + A2  e2. 
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These are the 5th and 6th basis vectors. 

 

The corresponding coefficients are 1, with all other 

coefficients being zero. 

 

Writing these coefficients as the third row of the matrix 

for gG we get (0, 0, 0, 0, 1, 1). 

 

Following the same method on the other rows we get: 

AG =  











0 0

0 0
 
1 0

0 1
 
0 0

0 0

0 0

0 0
 
0 0

0 0
 
1  1

0 −1

1 0

0 1
 
0 0

0 0
 
0 0

0 0

 . 

 

Theorem 2: If  is a representation of H  G, G is a 

representation of G. 

Proof: (yi  uj).(aG).(bG) 

      = (yk  uj.(yiayk
−1)).(bG) where yia  Hyk 

      = yh  uj(yiayk
−1).(ykbyh

−1) where ykb  Hyh 

      = yh uj(yiayk
−1ykbyh

−1) 

      = yh  uj(yiabyh
−1). 

 

Now yi(ab)  Hyh and so: 

(yi  uj).(ab)G = yh  uj(yiabyh
−1). 

 

Hence (ab)G = (aG)(bG). 
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Let G be the representation of G induced from the 

representation :H→EndF(U) of the subgroup H. 

 

Let Y = {y1, … , yn} be a right transversal for H and let 

{u1, … , um} be a basis for U. 

Then relative to the basis {y1  u1, y1  u2, … , yn  um} 

for FY  U, the matrix for gG is the mn  mn matrix 

made up of m  m blocks (Mij) with: 

Mij = 


the matrix of (yigyj

−1) if yigyj
−1  H

0 otherwise
 . 

There is exactly one non-zero block for each i and for 

each j. ☺ 

 

Theorem 3: If H  G and  is a character of H and g lies 

in the conjugacy class  (of G) then 

gG = 
|G|

|H|
  

|  H|

||
  

h

|  H|
  

where the sum is over all h    H. 

 

This is:  

index of 

H in G 
 proportion of 

 lying in H 
 average character 

for these elements 

 

Proof: The trace of gG is the sum of the traces of the 

diagonal blocks. These blocks are of the form (xgx−1) 

where xgx−1  H. 
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Let * =   H. Thus: 

gG = (ygy−1) where the sum is over those 

                                                    y  Y where ygy−1  H. 

= 
1

|H|
 (xgx−1)  where the sum is over those 

                                                    x  G where xgx−1  H. 

(This is because x = hy → y = h−1x → ygy−1 = h−1xgx−1h) 

= 
1

|H|
  |CG(g)|  

y  *

y  

= 
1

|H|
  

|G|

||
  

y  *

y  

This is because x1gx1
−1 = x2gx2

−1 if and only if 

                                                           x2
−1x1  CG(g). ☺ 

= 
|G|

|H|
  

|*|

||
  


y*

y

|*|
 . 

 

Example 3: In addition to S3 being isomorphic to a 

quotient group of S4 it is also a subgroup. 

The character table, over ℂ, of S3 is (swapping the 2nd and 

3rd columns so that it corresponds to the order : 

class 1 2 3 

size 1 3 2 

1 1 1 1 

2 1 −1 1 

3 2 0 −1 
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The index of S3 in S4 is 24/6 = 4. 

The proportions of 1, 2, 3, 4, 5 that lie in S3 are: 

1, ½, ¼, 0, 0 respectively. 

We now induce 1, 2, 3 to S4. 

Note that we have to be careful to make sure that we’re 

using the correct columns of the subgroup’s character 

table. Unless we organise it specially, as we did here, it 

need not be the case that the columns correspond in the 

order in which they’re listed. 

 

class 1 2 3 4 5 
size 1 6 8 6 3 

1G 4 2 1 0 0 

2G 4 2 1 0 0 

3G 8 0 −1 0 0 

 

None of these induced characters are irreducible. We’ll 

later see that 1
G and 2

G are each the sum of two 

irreducible characters while 3
G is the sum of three. 

However contained within them are the two missing 

irreducible characters that we didn’t pick up when 

inducing from quotient groups. 

 

When inducing up from quotient groups one should have 

the complete character table for the quotient available. 

Inducing up from the trivial character will only give the 

trivial character. On the other hand, inducing up from the 

trivial character of a subgroup will not just give the trivial 
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character. The induced character may or may not be 

irreducible, but even if reducible it is often possible to 

subtract already obtained irreducible characters to obtain 

a new irreducible character. One should induce up the 

linear character from as many subgroups as possible 

before putting one’s efforts into obtaining complete 

character tables for the subgroups. 

 

§5.4. Inducing Down 
 Normally one would proceed from smaller groups, 

as subgroups or quotient groups, to obtain a new character 

table. However there are some instances where it’s worth 

going from a larger group to a smaller. For example it’s 

somewhat easier to construct the character table for Sn 

than the corresponding An and it’s easier to find the 

character table for SL(n, p), the group of n × n matrices 

over ℤp that have determinant 1, rather than PSL(n, p), 

which is quotient of SL(n, p) by its centre. 

 Suppose  is an irreducible character for G and that 

takes the value 1 on the elements of some normal 

subgroup H. Then H is in the kernel of the representation 

 that corresponds to  and  will be an irreducible 

character for G/H. 
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Example 4: The character table for G = S4 is: 

 

 I (××)(××) (×××) (××) (××××) 
size 1 3 8 6 6 

1 1 1 1 1 1 

2 1 1 1 −1 −1 

3 2 2 −1 0 0 

4 3 −1 0 1 −1 

5 3 −1 0 −1 1 

 

The normal subgroup H, consisting of the first two 

conjugacy classes, is in the kernel of 1, 2 and 3. Hence 

1, 2 and 3 give irreducible characters for G/H, which is 

isomorphic to S3. 

 

 I (×××) (××) 
size 1 2 3 

1 1 1 1 

2 1 1 −1 

3 2 −1 0 

 

If  is an irreducible character of G then the restriction of 

 to a subgroup H will give a character, not necessarily 

irreducible, of H. 

 

Example 5: If G = S4 and H = S3, the subgroup consisting 

of permutations fixing the symbol 4, the irreducible 

characters of G give the following characters of H. 
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 I (×××) (××) 
size 1 2 3 

1 1 1 1 

2 1 1 −1 

3 2 −1 0 

4 3 0 1 

5 3 0 −1 

 

Here we get all the irreducible characters of H together 

with a couple of reducible ones: 

4 = 1 + 3 and 5 = 2 + 3. 

 

If H = A4 we get the following characters of A4. 

 

 I (××)(××) (×××) 
size 1 3 4 4 

1 1 1 1 1 

2 1 1 1 1 

3 2 2 −1 −1 

4 3 −1 0 0 

5 3 −1 0 0 

 

This gives two of the four irreducible characters of A4. 

The character 3 is the sum of the two remaining 

characters of A4 and we would need some extra work to 

find these. 



 114 

 


